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Unconventional superconductivity in 
magic-angle graphene superlattices
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Strong interactions among particles lead to fascinating states of matter, 
such as quark–gluon plasmas, various forms of nuclear matter within 
neutron stars, strange metals and fractional quantum Hall states1–3. 
An intriguing class of strongly correlated materials is the unconven-
tional superconductors, which includes materials with a range of 
superconducting critical temperatures Tc, from heavy-fermion and 
organic superconductors with relatively low Tc (a few to a few tens 
of kelvin) to iron pnictides and cuprates that can have Tc > 100 K  
(refs 4–8). Despite extensive experimental efforts to characterize these 
materials, unconventional superconductors are challenging to study 
theoretically because the models that are typically used to describe 
them cannot be solved exactly, motivating the development of alter-
native approaches for investigating and modelling strongly correlated 
systems. One approach is to simulate quantum materials with ultra-
cold atoms trapped in optical lattices, although technical advances are 
necessary to realize d-wave superfluidity with ultracold atoms at lower 
temperatures than are currently possible9,10.

Here we report the observation of unconventional superconductivity 
in a two-dimensional superlattice made from graphene—specifically, 
‘magic angle’ twisted bilayer graphene (TBG). Created by the moiré 
pattern between the two graphene sheets, the magic-angle TBG super-
lattice has a periodicity of about 13 nm, between that of crystalline 
superconductors (a few ångström) and optical lattices (about a micro-
metre). One of the key advantages of this system is the in situ electrical 
tunability of the charge carrier density in a flat band with a bandwidth 
of the order of 10 meV. This tunability enables us to study the phase 
diagram of unconventional superconductivity in unprecedented resolu-
tion, without relying on multiple devices that are possibly hampered by 

different disorder realizations. The superconductivity that we observe 
has several features similar to that of cuprates, including dome struc-
tures in the phase diagram and quantum oscillations that point to small 
Fermi surfaces near a correlated insulator state. Furthermore, it occurs 
for record-low carrier densities of the order of 1011 cm−2, orders of 
magnitude lower than the carrier densities of typical two-dimensional 
superconductors. The relatively high Tc = 1.7 K for such small densities 
puts magic-angle TBG among the superconductors with the strongest 
coupling, in the same league as cuprates and the recently identified 
FeSe thin layers11. Our results establish magic-angle TBG as a purely 
carbon-based two-dimensional superconductor and, more importantly, 
as a relatively simple and highly tunable material that enables thorough 
investigation of strongly correlated physics.

Monolayer graphene has a linear energy dispersion at its charge neu-
trality point. When two aligned graphene sheets are stacked, the 
hybridization of their bands due to interlayer hopping results in fun-
damental modifications to the low-energy band structure depending 
on the stacking order (AA or AB). If an additional twist angle is present 
between layers, a hexagonal moiré pattern consisting of alternating 
AA- and AB-stacked regions emerges and acts as a superlattice modu-
lation12–16. The superlattice potential folds the band structure into the 
mini Brillouin zone. Hybridization between adjacent Dirac cones in 
the mini Brillouin zone has an effect on the Fermi velocity at the charge 
neutrality point, reducing it from the typical value12–18 of 106 m s−1.  
At low twist angles, each electronic band in the mini Brillouin zone has 
a four-fold degeneracy of spins and valleys, the latter inherited from 
the original electronic structure of graphene12,17,19. For convenience, 
we define the superlattice density ns = 4/A to be the density that 
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corresponds to full-filling of each set of degenerate superlattice bands, 
where θ≈ /A a3 (2 )2 2  is the area of the moiré unit cell, a = 0.246 nm 
is the lattice constant of the underlying graphene lattice and θ is the 
twist angle. In Supplementary Video, we present an animation of the 
way in which the band structure in the mini Brillouin zone of TBG 
evolves as the twist angle varies from θ = 3° to θ = 0.8°, calculated using 
a continuum model for one valley12.

Special angles, namely the ‘magic angles’, exist, at which the Fermi 
velocity drops to zero; the first magic angle is predicted12 to be 
θmagic

(1)  ≈ 1.1°. Near this twist angle, the energy bands near charge neu-
trality, which are separated from other bands by single-particle gaps, 
become remarkably flat. The typical energy scale for the entire band-
width is about 5–10 meV (Fig. 1c)12,18. Experimentally confirmed con-
sequences of the flatness of these bands are high effective mass in the 
flat bands (as observed in quantum oscillations) and correlated insu-
lating states at half-filling of these bands, corresponding to n = ±ns/2, 
where n = CVg/e is the carrier density defined by the gate voltage Vg (C 
is the gate capacitance per unit area and e is the electron charge)18. 
These insulating states are a result of the competition between Coulomb 

energy and quantum kinetic energy, which gives rise to a correlated 
insulator at half-filling that has characteristics consistent with Mott-like 
insulator behaviour18. The doping density that is required to reach the 
Mott-like insulating states is ns/2 ≈ (1.2–1.6) × 1012 cm−2, depending 
on the exact twist angle. Here we report transport data that clearly 
demonstrate that superconductivity is achieved as the material is doped 
slightly away from the Mott-like insulating state in magic-angle TBG. 
We observed superconductivity across multiple devices with slightly 
different twist angles, with the highest critical temperature that we 
achieved being 1.7 K.

Superconductivity in magic-angle TBG
In Fig. 1a we show the typical device structure of fully encapsulated 
TBG devices. The two sheets of graphene originate from the same 
exfoliated flake, which permits a relative twist angle that is controlled 
precisely to within about 0.1°–0.2° (refs 17, 20, 21). The encapsulated 
TBG stack is etched into a ‘Hall’ bar and contacted from the edges22. 
Electrical contacts are made from non-superconducting materials 
(thermally evaporated Au on a Cr sticking layer) to avoid any potential 
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Figure 1 | Two-dimensional superconductivity in a graphene 
superlattice. a, Schematic of a typical twisted bilayer graphene 
(TBG) device and the four-probe (Vxx, Vg, I and the bias voltage Vbias) 
measurement scheme. The stack consists of hexagonal boron nitride 
on the top and bottom, with two graphene bilayers (G1, G2) twisted 
relative to each other in between. The electron density is tuned by a 
metal gate beneath the bottom hexagonal boron nitride layer. b, Four-
probe resistance Rxx = Vxx/I (Vxx and I are defined in a) measured in two 
devices M1 and M2, which have twist angles of θ = 1.16° and θ = 1.05°, 
respectively. The inset shows an optical image of device M1, including the 
main ‘Hall’ bar (dark brown), electrical contact (gold), back gate (light 
green) and SiO2/Si substrate (dark grey). c, The band energy E of TBG  
at θ = 1.05° in the first mini Brillouin zone of the superlattice. The  
bands near charge neutrality (E = 0) have energies of less than 15 meV.  

d, The DOS corresponding to the bands shown in c, for energies of  
−10 to +10 meV (blue; θ = 1.05°). For comparison, the purple lines show 
the total DOS of two sheets of freestanding graphene without interlayer 
interaction (multiplied by 103). The red dashed line shows the Fermi 
energy EF at half-filling of the lower branch (E < 0) of the flat bands, 
which corresponds to a density of n = −ns/2, where ns is the superlattice 
density (defined in the main text). The superconductivity is observed 
near this half-filled state. e, Current–voltage (Vxx–I) curves for device 
M2 measured at n = −1.44 × 1012 cm−2 and various temperatures. At 
the lowest temperature of 70 mK, the curves indicate a critical current 
of approximately 50 nA. The inset shows the same data on a logarithmic 
scale, which is typically used to extract the Berezinskii–Kosterlitz–
Thouless transition temperature (TBKT = 1.0 K in this case), by fitting to a 
Vxx ∝ I3 power law (blue dashed line).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 μV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.
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temperature of 70 mK, the conductance is substantially higher at zero 
magnetic field than it is in a perpendicular magnetic field of B⊥ = 0.4 T, 
consistent with mean-field suppression of a superconducting state by 
the magnetic field. Here, the maximum conductance is limited only 
by the contact resistance (Fig. 2a), which is absent in the four-probe 
measurements shown in the other figures.

In Fig. 2b, c we show the four-probe resistance of devices M1 and 
M2, respectively, as a function of density n and temperature T. Both 
devices show two pronounced superconducting domes on each side of 
the half-filling correlated insulating state. These features are similar to 
those associated with high-temperature superconductivity in cuprate 
materials. At the base temperature, the resistance inside the domes is 
lower than our measurement noise floor, which is more than two and 
three orders of magnitude lower than the normal-state resistance for 
devices M1 and M2, respectively. The I–V curves inside the domes 
display critical current behaviour (Fig. 1e), while being ohmic in the 
metallic phases outside the domes. Upon cooling while n is fixed at 
the middle of the half-filling state, the correlated insulating phase is 
exhibited at intermediate temperatures (from 1 K to 4 K); at lower tem-
peratures, both devices exhibit signs of superconductivity at the lowest 
temperatures. Device M1 becomes weakly superconducting, whereas 
device M2 becomes fully superconducting. This behaviour may be 
explained by a coexistence of superconducting and insulating phases 
due to sample inhomogeneity.

Magnetic-field response
The application of a perpendicular magnetic field B⊥ to a two- 
dimensional superconductor creates vortices that introduce dissipation 
and gradually suppress superconductivity23. In Fig. 3a, b we show the 

resistance of devices M1 and M2 as a function of density and B⊥. Both 
devices exhibit a maximum critical field of approximately 70 mT. The 
critical field varies strongly with doping density, showing two similar 
domes on each side of the half-filling state. Near the Mott-like insu-
lating state (n ≈ −1.47 × 1012 cm−2 to n ≈ −1.67 × 1012 cm−2 for M1; 
n ≈ −1.25 × 1012 cm−2 to n ≈ −1.35 × 1012 cm−2 for M2), periodic 
oscillations of the resistance and critical current as a function of B⊥ 
appear (see Methods and Extended Data Fig. 1 for detailed analysis). 
The oscillations seem to originate from phase-coherent transport 
through arrays of Josephson junctions, similarly to superconducting 
quantum interference device (SQUID)-like superconductor rings 
around one or more insulating islands. These junction regions could 
be due to slight density inhomogeneities in the devices, which would 
cause a few islands to be doped into the insulating phase while other 
parts of the device remain superconducting. Apart from these oscilla-
tory behaviours near the boundary of the half-filling insulating state, 
the critical current and zero resistivity inside the domes are gradually 
suppressed by B⊥ (Fig. 3c, d).

In Fig. 3e we show the critical magnetic field versus temperature for 
device M1, under perpendicular and parallel field configurations. The 
temperature dependence of the perpendicular critical field Bc⊥ is well  
described by Ginzburg–Landau theory: Φ ξ= / π − /⊥B T T[ (2 )](1 )c 0 GL

2
c  ,  

where Φ0 = h/(2e) is the superconducting flux quantum, h is the Planck 
constant, and ξGL is the Ginzburg–Landau superconducting coherence 
length, determined from the fit to be ξGL ≈ 52 nm at T = 0. On the 
other hand, the in-plane critical field dependence is not well explained 
by the Ginzburg–Landau theory for thin-film superconductors, owing 
to the atomic thickness of TBG (0.6 nm); at this thickness, the theory 
predicts an in-plane critical field of Bc ≥ 36 T as the temperature 
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Figure 3 | Magnetic-field response of the superconducting states 
in magic-angle TBG. a, b, Four-probe resistance as a function of 
density n and perpendicular magnetic field B⊥ in devices M1 (a) and 
M2 (b). As well as the dome structures around half-filling (similar to 
those in Fig. 2b, c), there are oscillatory features near the boundary 
between the superconducting phase and the correlated insulator phase. 
These oscillations are indicative of phase-coherent transport through 
inhomogeneous regions in the device (Methods, Extended Data Fig. 1).  

c, Differential resistance dVxx/dI versus d.c. bias current I for different B⊥, 
measured for device M2. d, Rxx–T curves for different B⊥, measured for 
device M1. e, Perpendicular (Bc⊥) and parallel (Bc‖) critical magnetic field 
versus temperature for device M1 (triangles; at 50% of the normal-state 
resistance). The fitting curves for Bc⊥ correspond to Ginzburg–Landau 
theory for a two-dimensional superconductor. Bc‖ is fitted to  
Bc‖(0)(1−T/Tc)1/2 , where Bc‖(0) is the parallel critical field at zero 
temperature. Measurements in a–c were conducted at 70 mK.
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approaches zero23. Instead, we interpret the dependence of Tc on the 
in-plane magnetic field B as a result of paramagnetic pair-breaking 
owing to the Zeeman energy. The zero-temperature in-plane critical 
field is extrapolated to be around 1.1 T, which is higher than but close 
to the value in the Pauli limit of Bp ≈ 1.85 T K−1 × Tc ≈ 0.93 T, estimated 
on the basis of the Bardeen–Cooper–Schrieffer (BCS) gap formula 
Δ ≈ 1.76kBTc, where kB is the Boltzmann constant.

We note that the superconductor–metal transition in magic-angle 
TBG is not sharp, so extracting both Bc and Tc has some uncertainty. 
Qualitatively, the dependence of the in-plane critical field on tempera-
ture is Bc ∝ (1 − T/Tc)1/2 near Tc (ref. 27). The results described above 
are consistent with the existence of two-dimensional superconductivity 
confined in an atomically thin space. As we show in the following, 
the coherence length ξ is comparable to the inter-particle spacing and 
might suggest that the system is driven close to a crossover between 
a BCS-like state and a Bose–Einstein condensate (the BCS–BEC 
crossover).

Phase diagram of magic-angle TBG
The phase diagram of magic-angle TBG consists of correlated insu-
lator phases and superconducting phases, which can be realized via 
continuous tuning of temperature, magnetic field and carrier density. 
Similarly to the superconducting domes discussed above, the correlated 
Mott-like insulator phase at half-filling also assumes a dome shape, 
with a transition to a metallic phase at about 4–6 K and centred around 
half-filling density. It has been shown18 that the Mott-like insulator 
phase crosses over to a metallic phase upon application of a strong mag-
netic field of around 6 T either perpendicular or parallel to the devices. 
A plausible explanation for this crossover is that the many-body charge 
gap is closed by the Zeeman energy.

In Fig. 4a–c we show the resistance versus temperature data meas-
ured in device M1 at zero magnetic field, B⊥ = 0.4 T and B⊥ = 8 T, 
respectively. At zero field, we observe the transition from a metal at high 
temperatures (above 5 K) to a superconductor. Close to half-filling there 

is an intermediate region in which insulating temperature dependence 
is observed from about 1 K to 4 K (above Tc); we identify this region 
as corresponding to the Mott-like insulating phase at half-filling. In a 
small magnetic field B⊥ = 0.4 T, which is above the critical magnetic 
field, the system remains an insulator down to zero temperature near 
half-filling and a metal away from half-filling. Finally, in a strong mag-
netic field B⊥ = 8 T, the correlated insulator phase is fully suppressed 
by the Zeeman effect and the system is metallic everywhere between 
n = −ns and the charge neutrality point. Our data highlight the rich 
phase space of metal–insulator–superconducting physics in magic- 
angle TBG28. A schematic of the evolution of the phase diagram as the 
magnetic field increases is shown in Fig. 4d–f.

Quantum oscillations in the normal state
We studied quantum oscillations in the entire accessible density range, 
including in the vicinity of the correlated insulating state at which 
superconductivity occurs. In Fig. 5a, b we show the Shubnikov–de 
Haas oscillations in longitudinal resistance Rxx as a function of carrier 
density for the hole-doped region (EF < 0) for device M2. The Landau 
levels in a TBG superlattice typically follow n/ns = Nφ/φ0 + s, where 
φ = B⊥A is the magnetic flux that penetrates each unit cell, φ0 = h/e 
is the (non-superconducting) flux quantum, N = ±1, ±2, ±3, … is 
the Landau-level index, s = 0 denotes the Landau fan that emanates 
from the Dirac point, and s = ±1 denote the Landau fans that result 
from electron-like or hole-like quasiparticles near the band edges of 
the single-particle superlattice bands in the mini Brillouin zone, which 
emanate from ±ns. The Landau levels also exhibit a four-fold degen-
eracy due to spins and valleys, and so the filling-factor sequence is 
±4, ±8, ±12, …

Unexpectedly, in addition to these expected Landau fans, we also 
observe a Landau fan that emanates from the correlated insulating 
state at −ns/2. This Landau fan has N = −1/2, −1, −3/2, −2, … (that 
is, filling factors of −2, −4, −6, −8, …) and s = −1/2. The supercon-
ducting dome is distinguishable in Fig. 5a directly beneath this Landau 
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fan, being very close to zero field and next to the correlated insulating 
region. Unlike commonly observed broken-symmetry states that split 
from a single degenerate Landau level into multiple levels, the halved 
filling factors appear to be intrinsic to the fan, holding down to the 
lowest magnetic field at which oscillations are still visible. Fractional 
values for s have been reported in graphene superlattices as a result 
of Hofstadter’s butterfly, which typically occurs in much stronger 
magnetic fields (greater than 10 T) but becomes obvious only at the 
intersection of Landau levels with different integer s (refs 29–31). 
Therefore, the physics of Hofstadter’s butterfly cannot explain the addi-
tional stand-alone fan observed here, which appears at fields as low 
as 1 T. Furthermore, the halving of the filling factors and s is unlikely 
to be explained in a non-interacting picture of unit-cell doubling due 
to strain or to the formation of a charge density wave, in which case 
either spin or valley degeneracy must be broken. We observed the same 
Landau level sequence in two other magic-angle TBG devices, so it 
is robust against small variations in twist angle and consistent across 
samples (Methods, Extended Data Fig. 2).

To study the non-trivial origin of the Landau fan near half-filling fur-
ther, we measured the effective mass from the temperature-dependent  
quantum oscillation amplitude according to the Lifshitz–Kosevich 
formula (Methods). In Fig. 5b, c we show the oscillations and oscil-
lation amplitudes at three different densities (indicated by arrows in 
Fig. 5a). In Fig. 5d, e we show the oscillation frequency fSdH and the 
effective mass extracted by fitting the oscillation amplitudes to the 
Lifshitz–Kosevich formula. The dependence of fSdH on carrier density 
n provides another perspective on the oscillations because the value 
of M = φ0Δn/ΔfSdH extracted from the slope Δn/ΔfSdH provides the 
number of degenerate Fermi pockets M directly. The experimental data 
clearly fit to M = 4 near the charge neutrality point and for densities 
beyond the superlattice gap, whereas M = 2 for the quantum oscilla-
tions that start near the correlated insulator state and right above the 

superconducting dome. The effective mass of the anomalous oscilla-
tions is about (0.2–0.4)me, where me is the bare electron mass. This 
mass is much larger than the mass near charge neutrality (about 0.1me) 
and beyond the superlattice gap (about 0.05me) at the same Δn, where 
Δn is density relative to the value of n at which fSdH = 0 in Fig. 5d.

The quantum oscillations above the superconducting dome clearly 
indicate the existence of small Fermi surfaces that originate from 
the correlated insulating state, which have areas proportional to 
n′ = |n| − ns/2, rather than of a large Fermi surface with an area that 
corresponds to the density |n| itself. The Hall measurements shown 
in Extended Data Fig. 3 also support this conclusion. Notably, similar  
small Fermi pockets that do not correspond to any pockets in the 
single-particle Fermi surface have been observed in underdoped 
cuprates, although their origin is debated32–34. Among the possibilities,  
the small Fermi surface that we observe could be the Fermi surface 
of quasiparticles that are created by doping a Mott insulator6,35. On 
the other hand, the halved degeneracy might be related to spin–
charge separation, as predicted in a doped Mott insulator35. More  
experimental and theoretical work is needed to clarify the origin of 
the quantum oscillations.

Discussion
The appearance of both superconductor and correlated insulator 
phases in the flat bands of magic-angle TBG at such a small carrier  
density cannot be explained by weak-coupling BCS theory. The 
carrier density that is responsible for Tc = 1.7 K is extremely small 
according to the quantum oscillation measurements, merely 
n′ = 1.5 × 1011 cm−2 at optimal doping. To place this in the context 
of other superconductors, in Fig. 6 we plot Tc against TF on a logari
thmic scale for various materials, where TF is the Fermi temperature. 
TF is proportional to the two-dimensional carrier density n2D, which 
the quantum oscillations data show to be equivalent to n′ for the  
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densities labelled A, B and C in a. From black to orange, the temperatures 
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Fermi surface degeneracy.
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superconducting dome region of magic-angle TBG36. Most uncon-
ventional superconductors have Tc/TF values of about 0.01–0.05, 
whereas all of the conventional BCS superconductors lie on the 
far right in the plot, with much smaller ratios. Magic-angle TBG is 
located above the trend line on which most cuprates, heavy-fermion 
and organic superconductors lie, with a Tc/TF value approaching that 
of the recently observed exotic FeSe monolayer on SrTiO3 (Fig. 6 
inset). This finding strongly suggests that the superconductivity in 
magic-angle TBG originates from electron correlations instead of 
weak electron–phonon coupling. One other frequently compared 
temperature is the Bose–Einstein condensation temperature for a 
three-dimensional boson gas TBEC, assuming that all particles in the 
occupied Fermi sea pair up and condense. Cuprates and other uncon-
ventional superconductors typically have Tc/TBEC ratios of roughly 
0.1–0.2. The Tc/TBEC ratio for magic-angle TBG is estimated to be 
up to 0.37, indicating very strong electron–electron interactions and 
possibly close proximity to the BCS–BEC crossover. This behaviour 
is in agreement with the fact that the coherence length in magic-angle 
TBG (ξ ≈ 50 nm at optimal doping) is of the same order of magnitude 
as the average inter-particle distance, (n′)−1/2 ≈ 26 nm.

The realization of unconventional superconductivity in a graphene 
superlattice establishes magic-angle TBG as a relatively simple, clean, 
accessible and, most importantly, highly tunable material, which could 
be used to study correlated electron physics. The interactions in magic- 
angle TBG could possibly be further fine-tuned by the twist angle and 
by the application of perpendicular electric fields by means of differ-
ential gating18,37. Moreover, Tc could possibly be enhanced further by 
applying pressure to the graphene superlattice to increase the interlayer 

hybridization or by coupling different magic-angle TBG structures to 
induce Josephson coupling in the vertical direction38. Similar magic- 
angle superlattices and flat-band electronic structures could also be 
realized with other two-dimensional materials or lattices to investigate 
strongly correlated systems with different properties.

Finally, despite several apparent similarities between magic-angle 
TBG and cuprates, there are key differences between the realizations 
of them. First, the valley degree of freedom in the underlying graphene 
lattices leads to an extra degeneracy, resulting in two carriers per 
superlattice unit cell at half-filling in the parent correlated insulator 
state. Higher quality devices and fine tuning may lead to supercon-
ductivity near the regions corresponding to one and three carriers per 
unit cell. Second, in magic-angle TBG the underlying superlattice is 
triangular, which should have a fundamental influence on the type of 
spin-singlet ground state it can host, owing to magnetic frustration. 
The lattice symmetry should also impose limitations on the possible 
superconducting pairing symmetry in magic-angle TBG; further 
experiments, for example, involving tunnelling and Josephson hetero-
junctions, are required to confirm this39. Various pairing symmetries, 
including (d + id′)-wave, (px + ipy)-wave and spin-triplet s-wave  
symmetries, have been predicted theoretically in the hypothetical 
superconductivity of monolayer or few-layer graphene40–42. If the 
mechanism for superconductivity in magic-angle TBG is indeed 
related to the correlated half-filling insulating state, as is the case in 
−dx y2 2-wave cuprates, then the pairing symmetry might be chiral 

(d + id′)-wave, to satisfy the underlying triangular symmetry of the 
superlattice. We anticipate that further experimental and theoretical 
work on magic-angle TBG and related magic-angle superlattices will 
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40K and paired fermionic 6Li are shown as open pink squares36,44 (Tc and TF 
have both been multiplied by 108 for 40K and 6Li). The point for magic-
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density and the effective mass obtained from quantum oscillations  
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using g = 1 to account for the halved degeneracy. Data for other materials 
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provide insights into the key factors that govern unconventional super-
conductivity, and bring us closer to realizing tunable quantum spin 
liquids43.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Sample preparation. The devices were fabricated using a modified dry-transfer  
technique17,18,20. Monolayer graphene and hexagonal boron nitride (about 
10–30 nm thick) were exfoliated on SiO2/Si chips and high-quality flakes were 
picked using optical microscopy and atomic force microscopy. We used a  
poly(bisphenol A carbonate) (PC)/polydimethylsiloxane (PDMS) stack on a glass 
slide mounted on a custom-made micro-positioning stage to pick up a hexagonal 
boron nitride flake at 90 °C, and then used the van der Waals force between hexa
gonal boron nitride and graphene to tear a graphene flake at room temperature.  
The separated graphene pieces were rotated manually by a twist angle of about 
1.2°–1.3° and stacked together again, which resulted in a controlled TBG  
structure. The stack was encapsulated with another hexagonal boron nitride flake 
on the bottom and released onto a metal gate at 160 °C. We did not perform any 
heat annealing after this step because we found that TBG tended to relax to Bernal-
stacked bilayer graphene at high temperatures. The final device geometry was 
defined by using electron-beam lithography and reactive ion etching. Electrical 
connections were made to the TBG by Cr/Au edge-contacted leads22.
Measurements. Transport measurements were performed in a dilution refrigerator 
with a base temperature of 70 mK, except for the temperature-dependent quantum 
oscillations, which were measured in a 3He fridge.

We used standard low-frequency lock-in techniques with an excitation fre-
quency of about 5–10 Hz and an excitation current of about 0.4–5 nA. The current 
flowing through the sample was amplified by a current pre-amplifier and measured 
by the lock-in amplifier. The four-probe voltage was amplified by a voltage pre- 
amplifier at ×1,000 gain and measured by another lock-in amplifier.

The twist angle of the devices was determined from the transport measurements 
at low temperatures18. In brief, a rough estimate of the twist angle is provided by the 
carrier density of the superlattice gaps at ±ns, which present as strongly insulating 
states. To refine this estimate, the Landau levels that appear at high magnetic fields 
were fitted to the Wannier diagram, which gives the twist angle with an uncertainty 
of about 0.01°–0.02°.
Extracting the quantum oscillation frequency and effective mass. The effective 
mass in device M2 was extracted using the standard Lifshitz–Kosevich formula, 
which relates the temperature-dependence of resistance change ΔRxx(T) to the 
cyclotron mass m* (at a given magnetic field B⊥):

⁎χ
χ

χΔ ∝ =
π

⊥
R T k Tm

ħeB
( )

sinh( )
, 2

xx
2

B

For each gate voltage (carrier density), we measured the Rxx–B⊥ curves at different 
temperatures, normalized them by their low-field values and subtracted a common 
polynomial background in B⊥. Examples of the curves are shown in Fig. 5b. The 
oscillation frequencies shown in Fig. 5d were extracted from these curves plotted 
versus 1/B⊥. From the temperature-dependent amplitude of the most prominent 
peak, we extracted m* using the above equation (Fig. 5e). The error bars in Fig. 5d, 
e represent 90% confidence intervals of the fit.
Commensuration and twist angle. Mathematically, in a twisted moiré system, 
the lattice is strictly periodic only when the twist angle satisfies a specific relation 
such that lattice registration order is perfectly recovered in a finite distance. These 
special cases are termed ‘commensurate’ structures. One important parameter in 
commensurate TBG structures is r, which can be intuitively understood as the 
number of ‘apparent’ moiré pattern wavelengths that it takes to recover the lattice 
periodicity fully19,55. The simplest commensurate structures with r = 1 are called 
‘minimal’ structures. These structures have exactly one moiré spot per unit cell. In 
TBG, as well as the minimal structures, which occur only at discrete angles, there 
are other commensurate structures that are arbitrarily close to any given angle θ 
with large r. However, at small twist angles, the evolution of the band structure of 
TBG can be viewed as semi-continuous; that is, an infinitesimal change in twist 
angle does not have a substantial effect on the band structure even though the 
lattice could be in a different family of commensurate structures (different r)19.  
In other words, the TBG system can be well approximated by a continuum 
model, as originally proposed in ref. 12, and the physics in minimal structures is  
representative of all nearby commensurate structures12. In our experiments, we 
do not expect the lattice to be in perfect commensuration, owing to disorder and 
intrinsic randomness due to the fabrication process. However, we think that the 
continuum model can faithfully represent the realistic TBG system in which any  
commensuration effect has been smoothed out.

We deduced the size of the moiré unit cell and the twist angle on the basis of the 
density of the superlattice gaps ±ns (±4 electrons per moiré unit cell), and then 
cross-checked the twist angle with the Landau levels observed at high magnetic 
fields. ±ns are the only multiples of ns that correspond to Fermi energies located 
within single-particle band gaps and therefore exhibit strong insulating behaviour. 

For twist angles above about 0.9°–1°, the band structure at energies higher than 
these gaps is strongly overlapping and no single particle gaps at ±2ns, ±3ns, … 
appear12–14,19,56. The experimentally measured values for the single-particle 
insulating gaps that we observe are in the approximately 30–60-meV range17,18. 
However, below about 0.9°–1°, the superlattice gaps at ±ns close and there is no 
single-particle gap at any energy in the system21,56. In this regime, there are Dirac-
like bands that cross at ±2ns which might be responsible for the resistance peaks 
observed in devices with very small twist angles, although possible interaction 
effects may enhance these peaks21. The states observed in very-low-twist devices 
are clearly different from the strong insulating gaps observed here and previously18. 
There is a marked change in the band structure at about 0.9°–1° (depending on 
the parameters of the model being used), which leads to a transition from single- 
particle gaps at ±ns to resistive states at ±2ns. This crossover can be observed 
clearly in Supplementary Video, in which we show an evolution of the band struc-
ture of TBG from θ = 3° to θ = 0.8°. The data in the video were calculated using 
the continuum model12

Possible effects due to finite electrical fields. It has been shown that by applying a 
perpendicular electrical field to Bernal-stacked bilayer graphene, topological states 
can emerge on the AB/BA stacking boundaries while the bulk of the AB and BA 
regions remains gapped57–59. In small-angle TBG, a similar effect can alter the band 
structure because the AA-stacked regions in the moiré pattern are interconnected 
by the AB/BA stacking boundaries. This effect has been observed recently in scan-
ning tunnelling experiments on ultrasmall-twist-angle samples60.

The question then arises of how the flat bands in magic-angle TBG are affected 
by the network of topological boundaries when a residual electrical field is present. 
Theoretical work on θ = 1.5° TBG has shown that when an inter-layer potential 
difference of ΔV = 300 mV is applied the low-energy superlattice bands become 
even flatter and the electronic states become more localized37. Therefore, there is 
good reason to believe that the flat-band physics presented here holds even when 
a perpendicular electric field is present, because the electric field will probably 
render the band structure even more localized and correlated as the twist angle 
approaches the magic angle. In our experiments, we estimate that the potential 
difference between the two layers induced by our gate voltage is at most about 
50 mV, and probably much less, owing to screening. Any possible effects of the 
residual electric field should be minimal.
Phase-coherent transport behaviour in superconducting magic-angle TBG. In 
Fig. 3a, b we observe oscillatory behaviour in the measured longitudinal resistance 
Rxx as a function of perpendicular magnetic field B⊥ when the charge density is 
close to the boundary between the half-filling insulating state and the supercon-
ducting states. The oscillations are most clearly seen for n ≈ −1.70 × 1012 cm−2 
to n ≈ −1.60 × 1012 cm−2 and n ≈ −1.50 × 1012 cm−2 to n ≈ −1.47 × 1012 cm−2 
in device M1.

In Extended Data Fig. 1a, b we show the differential resistance dVxx/dI  
versus bias current I and perpendicular magnetic field B⊥. At zero bias current, 
the oscillations of the differential resistance with B⊥ shown correspond to line 
cuts in Fig. 3a at densities of n ≈ −1.48 × 1012 cm−2 (Extended Data Fig. 1a) and 
n ≈ −1.68 × 1012 cm−2 (Extended Data Fig. 1b). The critical current, above which 
the superconductor becomes normal, oscillates with B⊥ at the same frequency, as 
can be visualized by the bright peaks in Extended Data Fig. 1a, b. The oscillation 
period is ΔB = 22.5 mT in Extended Data Fig. 1a and about ΔB = 4 mT in Extended 
Data Fig. 1b.

The fact that the critical current is maximum at zero B⊥ and oscillates at peri-
odic intervals of the magnetic field suggests the existence of Josephson junction 
arrays—in the simplest case, a superconducting quantum interference device 
(SQUID)-like superconducting loop, around a normal or insulating island23. It is 
unclear whether this inhomogeneous behaviour is a result of sample disorder or 
a coexistence of two different phases (such as the superconducting phase and the 
correlated insulator phase). Owing to the two-dimensional nature of our devices, 
the detailed current distribution in the device cannot be uniquely determined at 
this moment by transport measurements; however, from the oscillation period we 
deduce the effective loop area of the SQUID approximately using S = Φ0/ΔB, where 
Φ0 = h/(2e) is the superconducting quantum flux. (Note the difference between 
φ0 = h/e for the quantum Hall effect and Φ0 = h/(2e) for superconductivity.) For 
the experimental data in Extended Data Fig. 1a, b, we obtain areas of S = 0.09 μm2 
and S = 0.5 μm2, respectively. By comparison, the total device area between the 
voltage probes is approximately 1 μm2.

Using a simple model of a SQUID with a phenomenological decay of the oscil-
lation amplitude at higher magnetic fields, we attempt to reproduce the observed 
oscillations qualitatively using numerical simulations. In Extended Data Fig. 1c we 
show the simulated I–B⊥ map of the differential resistance for a SQUID with area 
S = 0.09 μm2, with the same critical current Ic1 = Ic2 = 7 nA in the two branches, 
corresponding to the experimental data in Extended Data Fig. 1a. In Extended Data 
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Fig. 1d we show the simulation for an asymmetric SQUID with area S = 0.5 μm2 
and critical currents of Ic1 = 6 nA and Ic2 = 10 nA for the two branches, which 
account for the partial cancellation of the critical current at low fields (that is, 
the total critical current does not reach zero in an oscillation) seen in Extended 
Data Fig. 1b. These simulations provide a qualitative perspective on the oscillatory 
phenomenon; the actual supercurrent distribution is probably much more com-
plex and will need to be established via magnetic imaging techniques. However, 
our data indicate that the superconducting behaviour that we observe is indeed 
a phase-coherent phenomenon. Although we did not fabricate SQUID devices 
deliberately using magic-angle TBG, these periodic oscillations of the critical cur-
rent in B⊥ are probably a result of the Josephson effect through a superconductor 
with insulating puddles, further confirming the existence of superconductivity in 
magic-angle TBG.

Induced superconductivity in graphene and graphene-based systems through 
proximity to another superconductor has been demonstrated, and graphene-based 
Josephson junctions continue to be explored61–63. Superconductivity in graphene 
induced by proximity to a high-Tc superconductor has been reported recently, and 
indications of induced unconventional pairing have been observed64,65.
Supplementary quantum oscillation data and low-field Hall effect. In Extended 
Data Fig. 2 we show magneto-transport data for device M1 and another magic- 
angle device D1. Both devices show evidence for the existence of an extra Landau 
fan with a degeneracy of M = 2 that emerges from the half-filling insulating states. 
All of the magic-angle devices that we have measured so far display quantum oscil-
lations that correspond to emergent quasiparticles on one side of the half-filling 
states—the one that is away from the charge neutrality point (that is, n < −ns/2 
for EF < 0 and n > ns/2 for EF > 0; see ref. 18 for the EF > 0 data)—but not the other 
(n > −ns/2 or n < ns/2). The Hall measurements reported below exhibit a similar 
asymmetry around the half-filling state. This universally asymmetric behaviour, 
regardless of the twist angle, might be explained if the effective mass of the qua-
siparticles on the side closer to charge neutrality is much larger, and therefore 
the corresponding quasiparticle has a much lower mobility, so that the quantum 
oscillations cannot be observed and their contribution to the Hall effect becomes 
negligible. Further theoretical work could potentially shed more light on the true 
nature of the many-body energy gap and the related quasiparticles.

We determined the Fermi surface area in the magic-angle TBG devices using the 
Shubnikov–de Hass oscillation frequency in a magnetic field (Fig. 5). We find that 
oscillations emerge from the correlated insulating state at half-filling n = −ns/2, 
and the oscillation frequency indicates small Fermi pockets associated with a 
shifted density of n′ = |n| − ns/2.

In Extended Data Fig. 3 we show another measurement of the transport carrier 
density via the low-field Hall effect measured up to ±1 T. The measured  
Hall density, given by =− / / ⊥ =

−
⊥

n e R B(1 )(d d )xy BH 0
1 , provides an independent  

measurement of the carrier density in the system. In both devices, at a temperature  

of 0.4 K we observe that, whereas the Hall density follows the gate-induced density 
closely (nH = n) near charge neutrality and up to the half-filling insulating states 
at |n| = ns/2, it ‘resets’ to a much smaller value beyond |n| = ns/2. The Hall density 
beyond these points behaves as if the charge carriers that contribute to transport 
are just those added beyond |n| = ns/2, and roughly follows nH = n + ns/2 for 
n < −ns/2 and nH = n − ns/2 for n > ns/2. This behaviour is in agreement with the 
measurements of the quantum oscillation frequency shown in Fig. 5d.

This resetting effect is quickly suppressed by raising the temperature to about 
10 K. Beyond this temperature the Hall density increases monotonically towards 
the band edge. At these higher temperatures, the Hall density in the flat bands no 
longer follows nH = n. This could possibly be explained by the thermal energy kT 
being close to the bandwidth of the flat bands, in which case the Hall coefficient 
must take into consideration the contributions from carriers that are thermally 
excited into the higher-energy, highly dispersive bands, which have opposite 
polarity. By contrast, up to 30 K, the Hall density measured at very high densities 
(|n| > ns) exhibits very linear behaviour according to |nH| = |n| − ns regardless of 
the temperature, which is consistent with the highly-dispersive, low-mass bands 
above and below the flat bands, as seen in Fig. 1c.
Data availability. The data that support the findings of this study are available 
from the corresponding authors on reasonable request.
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Extended Data Figure 1 | Evidence of phase-coherent transport in 
superconducting magic-angle TBG. a, b, Differential resistance dV/dI 
versus bias current I and perpendicular field B⊥, at two different charge 
densities n, corresponding to those in Fig. 3a. Periodic oscillations are 

observed in the critical current (identified approximately as the position 
of the bright peaks in dV/dI). c, d, Simulations intended to reproduce 
qualitatively the behaviour observed in a and b.
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Extended Data Figure 2 | Supplementary quantum oscillation data. 
a, b, Quantum oscillations in device M1 (a; θ = 1.16°, data shown for Rxx) 
and device D1 (b; θ = 1.08°, data shown for the two-probe conductance 
G2). The first derivative with respect to the gate-defined charge density n 
has been taken in both cases to enhance the colour contrast. Both devices 

exhibit a Landau fan that emerges from the half-filling state −ns/2 and 
have a Landau level sequence of −2, −4, −6, −8, …, consistent with the 
results shown in Fig. 5. By comparison, the Landau fans that start from 
charge neutrality have a sequence of −4, −8, −12, …
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Extended Data Figure 3 | Low-field Hall effect in magic-angle TBG.  
a, b, Low-field Hall effect for devices M1 (a) and M2 (b). The Hall density 
=− / / ⊥ =

−
⊥

n e R B(1 )(d d )xy BH 0
1  is plotted as a function of the total charge 

density induced by the gate (n), measured at temperatures from 0.4 K to 

31.8 K. Coloured vertical bars correspond to densities of −ns, −ns/2, ns/2 
and ns for the two samples. Dashed lines are the expected Hall density if 
the offset given in the corresponding formula is considered.
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